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Abstract
We analyse some aspects of the third law of thermodynamics. We first review
both the entropic version (N) and the unattainability version (U) and the relation
occurring between them. Then, we heuristically interpret (N) as a continuity
boundary condition for thermodynamics at the boundary T = 0 of the
thermodynamic domain. On a rigorous mathematical footing, we discuss the
third law both in Carathéodory’s approach and in Gibbs’ one. Carathéodory’s
approach is fundamental in order to understand the nature of the surface T = 0.
In fact, in this approach, under suitable mathematical conditions, T = 0 appears
as a leaf of the foliation of the thermodynamic manifold associated with the
non-singular integrable Pfaffian form δQrev. Being a leaf, it cannot intersect
any other leaf S = const of the foliation. We show that (N) is equivalent to
the requirement that T = 0 is a leaf. In Gibbs’ approach, the peculiar nature
of T = 0 appears to be less evident because the existence of the entropy is a
postulate; nevertheless, it is still possible to conclude that the lowest value of
the entropy S has to be attained at the boundary of the convex set where S is
defined.

PACS number: 05.70.−a

1. Introduction

We re-analyse the status of the third law of thermodynamics in the framework of a purely
thermodynamic formalism. After a discussion of the status of the third law in current
physical literature, and after an heuristic justification of the entropic version, we set up a
rigorous mathematical apparatus in order to explore the actual necessity for a third law of
thermodynamics. The approach by means of Pfaffian forms to thermodynamics, introduced
by Carathéodory, is the most powerful tool for understanding the problems which can occur
in thermodynamic formalism at T = 0. In our analysis of the latter topic the Pfaffian form
δQrev is expressed in terms of independent extensive variables. One finds that T = 0, as an
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integral manifold of δQrev, can be a leaf of the thermodynamic foliation if sufficient regularity
conditions for the Pfaffian form are ensured. Contrarily, T = 0 is intersected by the (would-be)
leaves S = const which occur at T > 0. The third law appears then as a condition which has
to be imposed if a foliation of the whole thermodynamic manifold, including the adiabatic
boundary T = 0, has to be obtained.

Also Gibbs’ approach is analysed. Carathéodory’s and Gibbs’ approaches together allow
us to better define the problem of the third law.

The plan of the paper is the following. In section 2, a discussion of the third law is given.
In section 3, we try to understand, from the physical point of view, if it is possible to give
a purely thermodynamic justification for the third principle in the entropic version (N). We
show that the third principle in the entropic version can be interpreted in a natural way as
a continuity boundary condition, in the sense that it corresponds to the natural extension of
thermodynamics to the states at T = 0. In section 4, we remark that Planck’s restatement of
the third law is not conventional but mandatory for homogeneous systems. In section 5, it
is shown that, in the framework of the Carathéodory approach, (N) is equivalent to ensuring
that the surface T = 0 is a leaf of the thermodynamic foliation associated with the Pfaffian
form δQrev. The isentropic surfaces cannot intersect the T = 0 surface, because no common
point between distinct leaves of the foliation determined by δQrev is allowed. Some problems
arising when (N) is violated are discussed, and it is recalled that a singular behaviour occurs
if the entropic version (N) fails. In section 6, a Gibbsian approach to the problem is sketched.
We show that the entropy can reach its minimum value (if any) only at the boundary T = 0 of
its domain.

2. The third law

The third law of thermodynamics has been formulated in two ways. The original formulation
of Nernst concerns the behaviour of the entropy of every system as the absolute zero
of the temperature is approached. Particularly, the entropic side of Nernst’s theorem
(N) states that, for every system, if one considers the entropy as a function of the
temperature T and of other macroscopic parameters x1, . . . , xn, the entropy difference
�T S ≡ S(T , x1, . . . , xn) − S(T , x̄1, . . . , x̄n) goes to zero as T → 0+

lim
T →0+

�T S = 0 (1)

for any choice of (x1, . . . , xn) and of (x̄1, . . . , x̄n). This means that the limit
limT →0+ S(T , x1, . . . , xn) is a constant S0 which does not depend on the macroscopic
parameters x1, . . . , xn. Planck’s restatement of (N) is

lim
T →0+

S = 0 (2)

and it is trivially mandatory for homogeneous systems (cf section 4).
The other formulation concerns the unattainability (U) of the absolute zero of the

temperature. The (U) side can be expressed as the impossibility to reach the absolute zero
of the temperature by means of a finite number of thermodynamic processes. Both the above
formulations are due to Nernst, and they are equivalent under suitable hypotheses, as has been
remarked in Landsberg’s studies, which are in many respects corner stones of this topic and in
general of the third law of thermodynamics [1–3]. A detailed analysis shows that in standard
thermodynamics unattainability (U) implies (N) if the following conditions are satisfied [1, 3]:
(a) the stability condition (∂S/∂T )x1,...,xn > 0 is satisfied for any transformation such that the
external parameters (or deformation coordinates) x1, . . . , xn are kept fixed; (b) there are no
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multiple branches in thermodynamic configuration space; (c) there is no discontinuity in
thermodynamic properties of the system near absolute zero.

A full implication (N) ⇒ (U) is possible in the case where unattainability means the
absence of quasi-static adiabatic transformations reaching T = 0 (as in the standard treatment).
Actually, a more general notion of unattainability can be assumed: ‘zero temperature states
do not occur in the specification of attainable states of systems’. This is almost literally the
(U4) principle as in [1, 2]. (U4) states that no process allows us to reach states at T = 0, even
as transient non-equilibrium states. In general, (U4) allows a de-linking of (U) and (N) and
implies that (N) �⇒ (U) and (U) �⇒ (N) [1, 2]. But such a de-linking occurs under particular
conditions: the failure of the implication (U) ⇒ (N) requires again a rejection of one of the
hypotheses (b), (c) above, whereas (N) ⇒ (U) fails if some process allows us to reach T = 0
[1, 2]. The reader is referred to the aforementioned studies for details. We premise that our
discussion often refers to these papers. About the inequivalence between (U) and (N), see also
[4, 5]. We also recall that the standard approach to Nernst’s theorem involves heat capacities
[6, 7] (see also [8]).

The third law has a non-definitively posed status in standard thermodynamics and a
statistical mechanical basis for it is still missing. Counter-examples to (2) have been
constructed [9, 10], whereas in [11] models displaying a violation of (1) are given. Moreover,
it is commonly stated that a violation of (N) occurs if the ground state is degenerate. As
far as the limit as T → 0+ is concerned, one has to distinguish between finite-size systems
and bulk systems. Griffiths shows that the behaviour of bulk systems near absolute zero,
in measurements, is determined by the contribution of the excitable low-lying energy states;
the contribution of the ground state, at reachable low temperatures, is instead irrelevant.
In statistical mechanics, the ground-state degeneracy for bulk systems does not play a
straightforward role in determining the behaviour as absolute zero is approached, and examples
exist where the ground state is not degenerate but the limit S → 0+ is not implemented
[9]. However, a role for the degeneracy of the ground state can be suitably resorted as in
[10]. Therein, it is remarked that the entropy functional at T = 0 depends on the boundary
conditions. Different boundary conditions correspond to different ground states for the bulk
system, and the contribution of the excitations of the low-lying states near absolute zero can
be related to a maximally degenerate ground state by means of a variational criterion [10]. We
limit ourselves to referring the reader to [12] for a further approach to the problem of the third
law by means of the concept of dynamical entropy and to [13] for another interesting point of
view concerning the problem of the third law in the presence of ground-state degeneracy.

The validity of thermodynamics for finite-size systems if T is sufficiently near absolute
zero has been questioned. A corner-stone of this topic is represented by Planck’s objection
(see [14] and references therein) against a thermodynamic description of a ‘standard’ system
below a given temperature, due to a reduction of the effective degrees of freedom making
it impossible even to define an entropy. The same problem is analysed in [15] where the
breakdown of thermodynamics near absolute zero is shown in the case of a Debye crystal.
Thermodynamic formalism is shown to fail because of finite-size effects. Indeed, if the finite
size of a real thermodynamic system is taken into account, according to [15] near absolute zero
it is no longer possible to neglect statistical fluctuations in the calculation of thermodynamic
quantities such as T , S because they are of the same order as the ‘standard’ leading terms1.
There is a relative uncertainty in the definition of equilibrium states which is of order one. Of
course, if one considers for the number of degrees of freedom a mathematical limit to infinity,

1 The example of [15] involves a Debye crystal having a volume V ∼ 1 cm3, 〈N〉 ∼ 1021; statistical fluctuations are
of the same order as the leading terms for T ∼ 10−5 K.
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then the formal success of the thermodynamic approach follows. For more details see [15]
(see also [16]). We do not discuss this topic further in this paper.

In [6, 15] it is proposed, in agreement also with the general axiomatic approach of
[1, 2], that the third law should be assumed as the position of a boundary condition for
the thermodynamic differential equations, whose experimental validation is stated in regions
above absolute zero. To some extent, the application of the thermodynamic equations to
absolute zero should be considered as a rather formal extrapolation of the theory in a region
beyond its confirmed domain of validity, and this could be considered as the main reason for
introducing a new postulate beyond the zeroth, the first and the second law [6]. In section 3, we
come back to this topic and give an interpretation of the Nernst heat theorem as a ‘continuity’
boundary condition for thermodynamics at T = 0. Moreover, the thermodynamic variables on
the ‘boundary set’ of the states at absolute zero temperature could be conventionally defined
as suitable limits (not depending on the path reaching a particular state at T = 0) of the
thermodynamic variables at ‘inner points’ of the thermodynamic configuration space and this
is proposed as the only satisfactory approach to the definition of thermodynamic variables at
absolute zero [1, 2].

Concluding this section, it is also remarkable that the third principle, if considered as
an impotence principle in analogy with the first and the second principles [17], in the (U)
version simply does not allow to get T = 0, whereas in the (N) version it also implies that the
work produced by an arbitrarily efficient Carnot machine between T2 > T1 (that is, a thermal
machine with efficiency arbitrarily near 1−) vanishes as T1 → 0+ (see [18]). For an extensive
discussion of the third law, see also [19–25]. See also the recent discussions in [26–30].

3. Naive Nernst heat theorem: a continuity boundary condition for thermodynamics
at T = 0

We assume here a physical attitude, and wonder if it is possible to give a purely thermodynamic
justification for the third principle in the entropic version (N). This section is dedicated only
to a heuristic discussion. A rigorous mathematical setting for the third law is found in the
following sections.

We stress that, in our reasoning herein, we adopt substantially Landsberg’s point of view
as expressed, e.g., in [3], p 69: ‘. . . one must imagine one is approaching the physical situation
at T = 0 with an unprejudiced mind, ready to treat a process at T = 0 like any process at
T > 0. With this attitude the maximum information concerning conditions at T = 0 can be
deduced . . .’.

Let us assume that transformations along zero-temperature states are allowed. In a
reversible transformation at T > 0, it is known that δQrev = T dS. As a consequence,
�S = 0 for adiabatic reversible transformations at T > 0. Then, let us consider ideally which
behaviour is natural to postulate for thermodynamics at T = 0. Along the T = 0 isotherm any
reversible transformation is adiabatic. From the point of view of thermodynamic formalism, a
discontinuity with respect to the natural identification between adiabats and isentropes arises
if the states at T = 0 are not assumed to be isentropic. From our point of view, the (N)
version of the Nernst heat theorem appears to be associated with a ‘continuity boundary
condition’ for thermodynamics at T = 0. Continuity means that the entropy is continuous
also at the boundary T = 0 and that the identification between isentropic transformations
and adiabatic reversible transformations holds also at T = 0. In fact, by continuity, it
is natural, from the point of view of classical thermodynamics, to postulate that states at
T = 0 are isentropic and then in the T –S plane the T = 0 line reduces to a single point
(T = 0, S = const). But, in order to match continuously the property that any isothermal
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reversible transformation γT =0 at T = 0 is isentropic, i.e. �S = 0 ∀ γT =0, one has to require
that along the isothermal surfaces the entropy variation becomes smaller and smaller, that is,
�T S ≡ S(T , x1, . . . , xn) − S(T , x̄1, . . . , x̄n) at fixed external parameters has to converge to
zero as T → 0+. The underlying hypotheses are:

(η0) T = 0 belongs to the equilibrium thermodynamic phase space;
(η1) it is possible ideally to conceive transformations at T = 0;
(η2) transformations at T = 0 are adiabatic reversible;
(η3) transformations at T = 0 are isentropic;
(η4) there is a continuous match between states at T = 0 and states at T > 0.

Actually, (η4) could even summarize all the hypotheses above, in the sense that a violation of at
least one hypothesis (η0), (η1), (η2) and (η3) would imply a discontinuity in thermodynamics
between zero-temperature states and non-zero ones. For a discussion of (η1), see
appendix A.

A final comment is that it is often stated that the third principle is not as fundamental as
the first and the second ones and that it is not related to any new potential in thermodynamics,
whereas the first law is associated with the internal energy function and the second law
with the entropy [4]. On this side of the topic, the third law prescribes the behaviour of
the zero-temperature part of the entropy limT →0+ S(T , x1, . . . , xn) = S(0, x1, . . . , xn) ≡
�(x1, . . . , xn) and fixes its value at zero. We shall show that

The third law of thermodynamics (Planck’s restatement) corresponds to a regularity
condition of the Pfaffian equation δQrev = 0 at the boundary T = 0 of the
thermodynamic manifold. It is equivalent to the request that a well-defined foliation
of the whole thermodynamic manifold exists.

In the following sections, we discuss the problem in a mathematically rigorous framework.

4. Absolute entropy and Planck’s postulate

In our discussion of the third law, the zero-temperature entropy constant is undetermined,
with the only constraint S0 � 0 suggested by statistical mechanical considerations. Planck’s
restatement of (N) requires S0 = 0, that is, S → 0+ as T → 0+, because the constant
S0 (entropy at T = 0), which does not depend on the thermodynamic parameters, does
not affect any physical measurement [31]. According to some authoritative experts in
the field of thermodynamics, this corresponds to a sufficient condition for implementing
(N), not a necessary one [18, 20, 32–34]. We discuss the problem in the framework of
the thermodynamics of homogeneous systems. We first point out that the density of the
thermodynamic domain in its closure, in particular near its boundary T = 0 (see also
the following sections), is a topological condition which allows us to extend uniquely by
continuity to T = 0 a continuous function h such that limT →0+ h exists. This allows us
to define S at T = 0 as the limit of S as T → 0+, in agreement with the discussion
in [1, 3] and with (N), and does not allow that an unnatural eliminable discontinuity
S(0, x1, . . . , xn+1) �= limT →0+ S(T , x1, . . . , xn+1) when the latter limit exists. Then we prove
a result which is valid in general:

Result 1. A necessary condition for (N) to hold is that S(T , x1, . . . , xn+1) is continuous in the
limit as T → 0+, whichever limit state (0, x1, . . . , xn+1) is considered at T = 0.

Proof. Let us define X ≡ x1, . . . , xn+1 and let us assume that S is not continuous in (0, X0).
If this discontinuity is not simply an eliminable one, which is excluded, then there exist two
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different sequences
{
T

(i)
k , X

(i)
k

}
, with i = 1, 2, such that

(
T

(i)
k , X

(i)
k

) → (0, X0) as k → ∞
and, moreover, such that

lim
k→∞

S
(
T

(1)
k , X

(1)
k

) �= lim
k→∞

S
(
T

(2)
k , X

(2)
k

)
. (3)

(N) is badly violated (see also section 7). �

It is to be noted that, if (N) holds, the entropy constant at T = 0 cannot depend on the
composition variables ni which specify the number of moles of the component substances
which are present in the material whose thermodynamic properties are studied. Herein, we let
composition variables ni be included in the set of what we called deformation parameters2.
The aforementioned independence is a consequence of result 2 below for an homogeneous
system.

The choice S0 = 0 for homogeneous systems is not simply a convention, which does not
amount to a real loss of generality, because measurements leave the constant undetermined3;
it is also a necessity (if the third law holds), in fact it holds

Result 2. Let us consider an homogeneous system which satisfies (N). Then (N) holds in
Planck’s restatement, i.e., limT →0+ S = 0.

Proof. For what follows, it is sufficient that S is a continuous function. If one considers
independent variables T , x1, . . . , xk, yk+1, . . . , yn+1, where yi are extensive variables for i =
k+1, . . . , n+1 and T , x1, . . . , xk are intensive variables, then S(T , x1, . . . , xk, yk+1, . . . , yn+1)

is a homogeneous function of degree one in the extensive variables (see, e.g., [20]). One can
also say that S is a quasi-homogeneous function of degree one and weights which are 0 for
the first k + 1 intensive variables and 1 for the remaining extensive variables, i.e. it satisfies
S(T , x1, . . . , xk, λyk+1, . . . , λyn+1) = λS(T , x1, . . . , xk, yk+1, . . . , yn+1) [36].

If (N) is satisfied, then

lim
T →0+

S(T , x1, . . . , xk, yk+1, . . . , yn+1) = S0 (4)

for any choice of x1, . . . , xk, yk+1, . . . , yn+1. Because of the aforementioned quasi-
homogeneity, for any real λ > 0 one has

lim
T →0+

S(T , x1, . . . , xk, λyk+1, . . . , λyn+1) = λS0 (5)

which is consistent with the independence of the limit from x1, . . . , xk, yk+1, . . . , yn+1 only
for S0 = 0. �

Summarizing:

Planck ’s restatement of the third law is mandatory in homogeneous thermodynamics.

5. Carathéodory’s approach and (N)

In Carathéodory’s approach [37], the infinitesimal heat exchanged reversibly δQrev, defined on
a open simply connected domain D, is a Pfaffian form, i.e. a one-form ω, whose integrability
has to be ensured in order to define an entropy function, see, e.g., [17, 38–41]. This approach
appears to be very clarifying with respect to the problem represented by the special surface
T = 0. In the following, we use ω ≡ δQrev.
2 This choice can be opinable in light of a rigorous axiomatic approach [35], but it allows us to call deformation
parameters all the parameters different from U (from T) in our discussion, which is limited to some aspects of the
third law.
3 In order to understand this point, it is important to underline that the constant S0 has actually no operative meaning,
in the sense that thermodynamic measurements (and extrapolations for the limit T → 0+) are relative to the integral
of C/T . So, in line of principle, it can be put equal to 0 without affecting thermodynamic measurements.
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5.1. Foliation in thermodynamics

Carathéodory’s principle of adiabatic inaccessibility is usually stated for the case where D
has no boundary, that is, ∂D = ∅ [40, 41]. It can be formulated as follows:

(C): each neighbourhood of any state x0 belonging to the domain D contains states which
are inaccessible from x0 along solutions of ω = 0.

This principle ensures that the Pfaffian form ω is completely integrable, i.e. it satisfies
ω ∧ dω = 0, in such a way that a foliation of the thermodynamic manifold into isentropic
hypersurfaces is allowed.

If a boundary is present, there are some changes in the theory4. The integrability condition

ω ∧ dω = 0 (6)

has to be imposed in the interior of the domain of the differential form ω, where ω is required
to be at least C1. These properties ensure that the Frobenius theorem can be applied and one
obtains a foliation in the inner part of the manifold. For what concerns the boundary, it can
be in part transverse and in part tangent to the inner foliation. It is tangent when it is a leaf of
the foliation itself, i.e. if the boundary is an integral manifold for ω [42]. If, instead, it is not
a leaf, one can induce on the boundary a foliation from the inner foliation. Then, a foliation
of the whole manifold is obtained if sufficient regularity conditions for ω at the boundary are
assumed.

Let us now consider what happens in thermodynamics. The integrating factor T vanishes
at T = 0, which means what follows. The non-singular integrable Pfaffian form δQrev gives
rise to a foliation of the thermodynamic manifold for T > 0. Each leaf of the foliation is a
solution of the equation δQrev = 0. This foliation has codimension one (i.e., each leaf is a
hypersurface in the thermodynamic manifold). For T > 0, the leaves of the foliation are the
hypersurfaces S = const. One has then to determine if the surface T = 0, which is an integral
submanifold of ω, is a leaf itself. In the following subsections, we analyse the above problem
in detail.

5.2. Domain D

Let D be the thermodynamic manifold whose independent coordinates are the extensive
variables U,V,X1, . . . , Xn; the variables V,X1, . . . , Xn will also be called deformation
parameters. Assume that dim D = n + 2. D is assumed to be an open convex set, in order
to match the concavity property of S. Homogeneity requires that (λU, λV, λX1, . . . , λXn)

belongs to D for each real positive λ, thus D has to be also closed with respect to multiplication
by a positive real scalar, i.e. D has to be a cone. Then, it is natural to require that D is a
convex cone [43]. One can also relax to some extent the latter condition (e.g., a positive lower
bound on V,N should be introduced on physical grounds, they cannot be arbitrarily near the
zero value or statistical fluctuations would not allow us to define a meaningful thermodynamic
state (cf [43])).

5.3. Pfaffian forms and homogeneous systems

Let ω ≡ δQrev be the Pfaffian form of interest, which is identified with the infinitesimal
heat exchanged reversibly. It is assumed to be at least of class C1 in the inner part of the

4 The author is indebted to Lawrence Conlon for an enlightening e-mail about the problem of the Frobenius theorem
for manifolds with boundary.
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thermodynamic manifold. One can write

δQrev = dU + p dV −
∑

i

ξi dXi (7)

where (U, V,X1, . . . , Xn) are extensive variables. The integrability of δQrev ensures that

δQrev = T dS. (8)

We assume that δQrev is an homogeneous Pfaffian form of degree one. This means that the
vector field

Y ≡ U
∂

∂U
+ V

∂

∂V
+

∑
i

Xi ∂

∂Xi
(9)

is a symmetry for δQrev [44–46], in the sense that

LY δQrev = δQrev (10)

where LY is the associated Lie derivative. It can be shown that, in the homogeneous case [43],
an integrating factor for (7) exists and it is given by

f ≡ iY δQrev = δQrev(Y ) = U + pV −
∑

i

ξiX
i. (11)

The integrating factor is required to be such that f �≡ 0, which means that Y is not
a characteristic or trivial symmetry for the distribution associated with δQrev (cf [45]).
Moreover, one requires f � 0, which is easily shown to be equivalent to the conventional
choice T � 0. We sketch here some results of [43]. One finds

δQrev = f dŜ (12)

and it can be shown in general that, for any homogeneous integrable Pfaffian form, ω/f has
to be equal to dH/H , where H is a positive definite homogeneous function of degree one;
moreover, the homogeneous function H is unique apart from a multiplicative undetermined
constant [43] (see also [46] for a general proof). This function H is actually the entropy S,
as can be straightforwardly deduced also by direct comparison with the extensivity property
of S

S = 1

T
U +

p

T
V −

∑
i

ξi

T
Xi (13)

in fact, one finds that f coincides with the product TS. As a consequence, one has

dŜ = ω

f
= dS

S
(14)

which implies

S = S0 exp

(∫



ω

f

)
(15)

where 
 indicates a path between a reference state U0, V0, X
1
0, . . . , X

n
0 and the state

U,V,X1, . . . , Xn. We require that the thermodynamic foliation is described everywhere
in D by the leaves Ŝ = const, which means that Ŝ has to be defined everywhere in the
thermodynamic manifold (except maybe at the boundary f = 0) [43]. The only problems can
occur where f = 0. Moreover, one also assumes that to each level set S = const corresponds
a unique leaf (which means that each isentropic surface is path-connected, as it is natural to
assume).
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5.4. Zeros of the integrating factor and the domain

Let us define the set

Z(f ) ≡ {(U, V,X1, . . . , Xn) | f (U, V,X1, . . . , Xn) = 0}. (16)

Z(f ) is the set of the zeros of f . We define also

Z(T ) ≡ {(U, V,X1, . . . , Xn) | T (U, V,X1, . . . , Xn) = 0} (17)

and

Z(S) ≡ {(U, V,X1, . . . , Xn) | S(U, V,X1, . . . , Xn) = 0}. (18)

The set Z(f ) = Z(T )∪Z(S) corresponds to an integral manifold of ω (ω is non-singular and
ω = f dŜ).

5.4.1. Z(T ). The surface T = 0 is usually excluded from the thermodynamic domain (see
e.g., [35, 48, 49]). From the point of view of the approach involving extensive variables, it has
to be discussed if Z(T ) is empty or not (it is surely non-empty in the black-hole case (see also
[50])). In the former case, it should be discussed if there is a lowest temperature [1] (maybe
different for each system) and what this implies for the physics. A different lowest temperature
for each system is not a viable hypothesis, because one could put in thermal contact a system
at its own lowest temperature with another system at a lower temperature and should see an
heat flux from the former to the latter, and a decrease in temperature of the former. Thus,
a lowest temperature should be allowed to be the same for all systems. Moreover, from an
experimental point of view there is no apparent limit to the possibility of approaching T = 0.
From a theoretical point of view, there is actually no physical hindrance to consider T = 0 as a
possible value. From a mathematical point of view, the Pfaffian form δQrev vanishes at T = 0
but it is non-singular. A singularity of a Pfaffian form ω ≡ ∑

i ai(x) dxi is defined as the set
where ai(x) = 0 ∀i, i.e., where all the coefficients of the Pfaffian form vanish. But in the
thermodynamic case, no singularity is allowed, because of the coefficient of the internal energy
term, which is in any case one. Thus, no mathematical hindrance to consider T = 0 in the
thermodynamic domain appears. The singularity appears only when T is used as independent
variable, and it is due to the fact that the change of variable U → T is a diffeomorphism only
for T > 0. See also the following subsection. This topic is also discussed in [51].

The set Z(T ) is expected to be an hypersurface, but, in general, it could be a priori
a submanifold of dimension 1 � k � n + 1. Actually, it is natural to assume that it is a
hypersurface, i.e., a manifold of codimension one. The equation

T (U, V,X1, . . . , Xn) = 0 (19)

is required to be implemented for any value of V,X1, . . . , Xn which is compatible with the
system at hand. Contrarily, one should admit that T = 0 could be allowed only for a restricted
region of parameters (e.g., a crystal could not be allowed to assume a value V = V0 for the
volume at T = 0) in such a way that a thermal contact with a lower temperature system could
not lower the system temperature near the absolute zero if values of the parameters outside
the allowable range were involved. We then assume that the T = 0 is a path-connected
hypersurface which coincides with the adiabatic boundary T = 0 of the thermodynamic
manifold (see also subsection 5.5).

5.4.2. Z(S). The set Z(S) has to be contained in the boundary of the thermodynamic
manifold. This is a consequence of the concavity of S and of the requirement S � 0, as shown
in section 6. S = 0 can moreover be attained only at the boundary surface T = 0, in fact



8174 F Belgiorno

S = 0 at T > 0 can be rejected on physical grounds. In fact, any state z such that Tz > 0 and
S(z) = 0 should have the peculiar property of allowing the system only to absorb heat along
any path γz starting from z in a neighbourhood Wz of z. If Cγ (T ) is the heat capacity along a
path γ which does not contain isothermal sub-paths, one has that

S(y) =
∫ Ty

Tz

dT

T
Cγz

(T ) (20)

should be positive for any state y non-isentropic to z in Wz, which is possible only for heat
absorption (in fact, Cγz

(T ) < 0 would be allowed for states such that Tz < Ty , which would
imply heat absorption, and Cγz

(T ) > 0 would be allowed for states such that Tz > Ty). The
same is true if one considers an isothermal path starting at z, in fact the heat exchanged would
be Tz�S and �S should be positive in a neighbourhood of z, S = 0 being a global minimum
of S. Thermal contact with a colder body at T < Tz should allow an heat flow outgoing from
the system because of the second law in the Clausius formulation. Then, no possibility to
approximate such a thermal contact by means of a reversible transformation exists, and this
behaviour can be refused as pathological.

There is also another argument one can introduce against the possibility that, for a non-
negative definite entropy, the set Z(S) − Z(T ) is non-empty. By using standard formulae of
thermodynamics, one has for all T and for all x1, . . . , xn+1

S(T , x1, . . . , xn+1) = S(0, x1, . . . , xn+1) +
∫ T

0

dz

z
Cx1,...,xn+1(z) > 0 (21)

x1, . . . , xn+1 are deformation parameters (they could also be in part intensive); because of
the concavity condition Cx1,...,xn+1(T ) > 0 the entropy can vanish only for T = 0. A further
discussion is found in subsection 5.5.

Then a non-negative concave entropy implies that the set Z(S) of the zeros of S is
contained in the set Z(T ) of the zeros of T:

Z(S) ⊆ Z(T ). (22)

The two sets coincide if (N) holds, otherwise Z(S) ⊂ Z(T ) and Z(S) = ∅ is also allowed.
Then we get the following equality:

Z(f ) = Z(T ). (23)

If one considers a concave entropy which can also be negative, then it happens that
Z(f ) ⊇ Z(T ) because Z(S) is not, in general, a subset of Z(T ). A typical example is
the classical ideal gas. Let us consider the monoatomic ideal gas. One has [47]

S(U, V,N) = N

[
5

2
+ log

(
U 3/2V

N5/2

1

(3π)3/2

)]
(24)

the corresponding Pfaffian form is

ω = dU +
2

3

U

V
dV +

2

3

U

N
log

(
U 3/2V

N5/2

1

(3π)3/2

)
dN (25)

and one has

T = 2

3

U

N
(26)

and

f = 2

3
U

[
5

2
+ log

(
U 3/2V

N5/2

1

(3π)3/2

)]
. (27)
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In this case one has

Z(T ) = {U = 0} (28)

and

Z(S) =
{
(U, V,N)

∣∣∣∣ U 3/2V

N5/2

1

(3π)3/2
= exp

(
−5

2

)}
. (29)

Then Z(f ) ⊃ Z(T ) and f vanishes before U = 0 is reached.
The equation f = 0 is an implicit equation which defines a submanifold of the

thermodynamic manifold. This is trivial if f is at least C1 everywhere in D ∪ ∂D, in fact
f = 0 defines a C1 hypersurface contained in the domain. This submanifold could be trivially
an hyperplane U = U0 = const, or a non-trivial hypersurface U = b(U, V,X1, . . . , Xn). A
further discussion is found in subsection 5.5 and in subsection 6.3.

5.5. Boundary revisited

In thermodynamics, as discussed in section 5.4, it is to some extent natural to assume that
the boundary T = 0 is described explicitly by a (maybe smooth, let us assume at least C1)
function:

U = b(X1, . . . , Xn+1); (30)

in the following, we replace for simplicity the set of independent extensive variables
V,X1, . . . , Xn with the set X1, . . . , Xn+1. By assuming that the function b is bounded
from below, one can figure that (30) corresponds to the equation for the ground-state energy of
the system as a function of the deformation parameters. b is a function which is homogeneous
of degree one with respect to (X1, . . . , Xn+1):

b(λX1, . . . , λXn+1) = λb(X1, . . . , Xn+1). (31)

Thus, b has to be defined on a cone Kb ⊂ R
n+1. Moreover, if U0, X

1, . . . , Xn+1 belongs to the
boundary T = 0, from

T (U,X1, . . . , Xn+1) =
∫ U

U0

dU
∂T

∂U
(U,X1 . . . , Xn+1) (32)

(where the integral is an improper integral, because ∂T /∂U = 1/CX1,...,Xn+1 → ∞ as T → 0+),
and from the concavity of S, which implies that CX1,...,Xn+1 > 0, one finds that U � U0, i.e. it
has to hold U � b(X1, . . . , Xn+1). Thus, the domain D∪∂D has to be such that the inequality
U � b(X1, . . . , Xn+1) is implemented for each U and for each (X1, . . . , Xn+1) ∈ Kb. The
domain D ∪ ∂D contains the set

epi(b) ≡ {(U,X1, . . . , Xn+1) | (X1, . . . , Xn+1) ∈ Kb, U � b}. (33)

This set is the so-called epigraph of the function b. If the function b(X1, . . . , Xn+1) is required
to be convex, then it is defined in the convex cone Kb, and its epigraph epi(b) is a convex cone
(the epigraph of a homogeneous b is a cone). Then, the domain can be chosen to be

D ∪ ∂D = epi(b). (34)

One can also assume that D ∪ ∂D is a convex cone of the form (33) such that Kb ≡
IX1 × . . . IXn+1 , where IX1 , . . . , IXn+1 are intervals (R+, R− or R). We can find coordinates
(B,X1, . . . , Xn+1) such that the boundary T = 0 coincides with B = 0. In fact, we can
simply define

B ≡ U − b(X1, . . . , Xn+1). (35)
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B � 0 is a degree one homogeneous function, and ∂U/∂B = 1. By inverting one finds

U = B + b(X1, . . . , Xn+1). (36)

As a consequence, one gets

f̄ ≡ f (B,X1, . . . , Xn+1) = B + b(X1, . . . , Xn+1) −
∑

k

ξkX
k (37)

by definition, f̄ vanishes for B = 0, i.e.

0 = b(X1, . . . , Xn+1) −
∑

k

ξk(0, X1, . . . , Xn+1)Xk (38)

⇔ ∂b

∂Xk
= ξk(0, X1, . . . , Xn+1) ∀k. (39)

Note that, by defining for all i = 1, . . . , n + 1

ξ̃i (B,X1, . . . , Xn+1) ≡ ξi(B,X1, . . . , Xn+1) − ∂U

∂Xi
(B,X1, . . . , Xn+1) (40)

one finds

ω = dB −
∑

i

ξ̃i (B,X1, . . . , Xn+1) dXi (41)

and it holds ξ̃i (B = 0, X1, . . . , Xn+1) = 0 for all i = 1, . . . , n + 1, because of the assumption
for f = 0 to be an integral hypersurface for ω. Moreover, note that, under this assumption
about the domain D ∪ ∂D, one obtains that Z(S) ⊆ Z(T ) necessarily. In fact, one can write
for an everywhere continuous entropy

S(B,X1, . . . , Xn+1) = S(0, X1, . . . , Xn+1) +
∫ B

0
dY

1

T (Y,X1, . . . , Xn+1)
(42)

where S(0, X1, . . . , Xn+1) is the value attained by S at B = 0 by continuity (see also
appendix B); it is evident that S cannot vanish outside Z(T ), because S(0, X1, . . . , Xn+1) � 0
and

∫ B

0 dY1/T (Y,X1, . . . , Xn+1) > 0 for all B > 0.
As far as the entropy S as a function of B,X1, . . . , Xn+1 is concerned, it is such that

∂S

∂B
= 1

T (B,X1, . . . , Xn+1)
(43)

∂S

∂Xi
= − ξ̃i (B,X1, . . . , Xn+1)

T (B,X1, . . . , Xn+1)
∀i = 1, . . . , n + 1. (44)

5.5.1. A further setting for the boundary. Let us consider in general the boundary f = 0
as a boundary of a differentiable manifold. Then the manifold is locally homeomorphic
to Hn+2 ≡ {(y0, . . . , yn+1) ∈ R

n+2 | y0 � 0} and one can find a local coordinate system
y0, . . . , yn+1 such that y0 � 0 and the boundary is identified by y0 = 0. An atlas of such
charts allows us to cover the whole boundary, with standard treatment for the transition
functions allowing to pass from a chart to another in the regions where charts overlap. There
is a regular local map U,X1, . . . , Xn+1 → y0, y1, . . . , yn+1 such that locally

ω =
n+1∑
i=0

ai(y
0, y1, . . . , yn+1) dyi (45)

with straightforward relations between the coefficients ai in these coordinates and the
‘thermodynamic’ coefficients above. In order that y0 = 0 is an integral hypersurface,
one has to require that ai(y

0 = 0, y1, . . . , yn+1) = 0 for all i = 1, . . . , n + 1 and that
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a0(y
0 = 0, y1, . . . , yn+1) �= 0 because ω is non-singular. One may also be allowed to

introduce a regular transformation U → B̂ such that the boundary coincides with B̂ = 0 (as
e.g., when the domain is as in (34)). Then one can find

ω = ∂U

∂B̂
dB̂ −

∑
i

ξ̂i (B̂, X1, . . . , Xn+1) dXi (46)

where one has ξ̂i (B̂ = 0, X1, . . . , Xn+1) = 0 for all i = 1, . . . , n + 1.
Note that, because of the properties of the Pfaffian form ω, the absolute temperature T

cannot be used as a good coordinate for the boundary, in fact ∂U/∂T → 0 as T → 0+ for
all physical systems allowing a finite S at T = 0. This choice (as well as the choice of f )
seems to transform the regular Pfaffian form ω into a singular one, but this trouble is simply
due to the singularity in the Jacobian of the coordinate transformation U → T , which is a
diffeomorphism only for T > 0 (see also [51]).

5.6. Condition to be satisfied in order that T = 0 is a leaf

In order to understand better the problem of the boundary T = 0, it is useful to recall the
equivalence between the equation ω = 0 and the so-called Mayer–Lie system of partial
differential equations (herein, Xi stays for any extensive variable different from U and ξi for
the corresponding intensive variable)

∂U

∂Xi
(X1, . . . , Xn+1) = ξi(U,X1, . . . , Xn+1) for i = 1, . . . , n + 1. (47)

One can also assign an initial condition

U
(
X1

0, . . . , X
n+1
0

) = U0 (48)

and thus define a Cauchy problem for the above Mayer–Lie system. The integrability condition
ω ∧ dω = 0 in the inner part of the manifold is sufficient for a C1 Pfaffian form in order to
ensure the existence and the uniqueness of the above Cauchy problem. This means that the
Cauchy problem with initial point at the T = 0 boundary allows solutions which lie in T = 0.
Let us consider the following differential equation which describes isentropic curves in the
special coordinates adapted to the boundary introduced in subsection 5.5:

dB

dτ
=

∑
i

ξ̃i (B(τ),X1(τ ), . . . , Xn+1(τ ))
dXi

dτ
. (49)

This equation can be easily obtained from (47) and τ ∈ [0, 1]. Let us consider at least
piecewise C1 functions X1(τ ), . . . , Xn+1(τ ) for τ ∈ [0, 1]. These functions are arbitrarily
assigned. Let us consider a solution curve B(τ) > 0 such that limτ→0 B(τ) = 0.
By hypothesis, X1(τ ), . . . , Xn+1(τ ) are finite for τ → 0. Then, by continuity, such a solution
can be extended to τ = 0, i.e., T = 0 cannot be a leaf. This happens as a consequence of
well-known theorems on the ordinary differential equations, (see [52], pp 67–8). It holds

Result 3. Let us assume that ω ∈ C1(D ∪ ∂D). Then, for any functions X1(τ ), . . . ,

Xn+1(τ ) ∈ C1([0, 1]) the Cauchy problem

dB

dτ
=

∑
i

ξ̃i (B(τ),X1(τ ), . . . , Xn+1(τ ))
dXi

dτ

B(0) = 0

allows only the solution B = 0, i.e., T = 0 is a leaf.



8178 F Belgiorno

Proof. The proof is a trivial consequence of ξ̃i (0, X1(0), . . . , Xn+1(0)) = 0 for all
i = 1, . . . , n + 1 and of the standard existence and uniqueness theorem for solutions of
ordinary differential equations [52]. �

The same result holds true with obvious changes in the case where coordinates
y0, . . . , yn+1 introduced in section 5.5 are used. A priori, one can consider also a Pfaffian
form ω such that it is continuous at the boundary T = 0 but non-necessarily C1 there. The
uniqueness of the solution of (47) with initial condition at the surface T = 0 could be ensured
if the functions ξi(U,X1, . . . , Xn+1) are locally Lipschitzian with respect to U uniformly with
respect to X1, . . . , Xn+1 in a neighbourhood of

(
U0, X

1
0, . . . , X

n+1
0

)
. If even this condition

fails, then the continuity of ω, i.e., the continuity of ξ also in T = 0, can allow multiple
solutions of the differential equation (47). Note that, in the case there exist two solutions of
the Cauchy problem for the Cauchy problem (50), one lying in the T = 0 surface and the other
leaving the T = 0 surface, then these solutions are tangent at the initial point. This means
that, in the case of existence of the limit as B → 0+ of the entropy, when (N) is violated, there
are surfaces S = const which are tangent to the submanifold T = 0 (see section 5.6.2).

If T = 0 is a leaf (or if the connected components of T −1(0) are leaves if T = 0 is not
connected), the only possibility is that, in approaching T = 0, one is forced to change leaf
S = const, i.e. it is not possible to approach T = 0 by remaining on the same leaf S = const,
otherwise the inner solution of ω = 0 could be extended to T = 0. In the neighbourhood of
any point belonging to T = 0 ⇔ B = 0, one can find inner points, each of which belongs to
a surface S = const. In fact, each point of the surface B = 0 is a limit point for the nearby
inner points of the thermodynamic domain and each inner point has to belong to an S =
const integral manifold, because of the integrability condition. In order to approach T = 0
at finite deformation parameters, one has necessarily to change from one adiabatic surface
S = const to another one, it is impossible to approach T = 0 by means of a single adiabatic
transformation. We have then a mathematical explanation of the naive unattainability picture
sketched by means of S−T diagrams one finds in standard textbooks on thermodynamics (cf
also the definition of P(x) transformations in [1]).

We now prove the main result of this section:

Result 4. Let us consider D described by means of the coordinates (B,X1, . . . , Xn+1)

introduced in subsection 5.5;

let δQrev ∈ C1(D) ∩ C(D ∪ ∂D) be integrable;
let S be continuous at T = 0, i.e., at B = 0.

Then (N) holds if and only if B = 0 is a leaf of the thermodynamic manifold D ∪ ∂D.

Proof. The implication (N) ⇒ {B = 0 is a leaf} follows trivially from the fact that
S(B,X1, . . . , Xn+1) > 0 for any B > 0 and any X1, . . . , Xn+1. Thus, there is no isentropic
path starting in D and reaching B = 0, i.e., B = 0 is a leaf of the thermodynamic foliation.
(Note also that the same would be true in the case one finds limB→0+ S(B,X1, . . . , Xn+1) ≡ �0

with �0 a positive constant (this note is useful for [51]).)
The implication {B = 0 is a leaf} ⇒ (N) can be proved by showing that a

violation of (N) implies that B = 0 cannot be a leaf. In fact, if (N) is violated
and limB→0+ S

(
B,X1

0, . . . , X
n+1
0

) ≡ S
(
0, X1

0, . . . , X
n+1
0

)
, then the inner integral manifold

0 < S
(
0, X1

0, . . . , X
n+1
0

) = const exists and can be continuously extended to T = 0.
This can be proved by means of a variant of the implicit function theorem. For simplicity,

we put here

X ≡ X1, . . . , Xn+1. (50)



Notes on the third law of thermodynamics: I 8179

Let us consider a point (0, X0) which is not a local minimum for S, i.e. it is not such that
S(0, X0) � S(B,X) in a neighbourhood of (0, X0). Such a point surely exists if (N) is
violated, as it is easy to show (cf also [51]). We are interested in the zeros of the function

σ(B,X) ≡ S(B,X) − S(0, X0). (51)

The function σ(B,X) is a continuous function which is monotonically strictly increasing in B
everywhere in the domain D ∪ ∂D, because S(B,X) is, by construction, a strictly increasing
monotone function in B, as is evident from (42).

In particular, we wish to know if there is a continuous function B(X) defined in a
neighbourhood of (0, X0) such that σ(B(X),X) = 0 and such that B(X0) = 0. If (0, X0)

is a strict local minimum for S, then by definition there exists a neighbourhood of (0, X0)

where σ(B,X) > 0, thus the aforementioned function B(X) does not exist. If it is a weak
local minimum, in the sense that S(0, X0) � S(B,X) in a neighbourhood and the equality
is allowed, again σ(B(X),X) = 0 does not admit solutions, in fact if S(B,X) = S(0, X0)

is allowed in a neighbourhood W ⊃ [0, B0) × V of (0, X0), with V � X0 open set, then
S(0, X) < S(0, X0) because S(0, X) < S(B,X). Thus, (0, X0) being a local minimum, one
can find a smaller neighbourhood where S(B,X) = S(0, X0) is impossible for any B > 0
(S(0, X) = S(0, X0) is instead allowed).5

In any convex neighbourhood W of (0, X0) there exist (B+, X+) and (B−, X−) such that
σ(B+, X+) > 0 and σ(B−, X−) < 0, because (0, X0) is not a local minimum. By continuity,
for any convex neighbourhood of (0, X0) there exists (B0, X0) such that σ(B0, X0) = 0. The
point (0, X0) is then a limit point for the set Z(σ) ≡ {(B0, X0) | σ(B0, X0) = 0}, which is a
closed set because σ is continuous. In order to show that a solution B(X) for σ(B(X),X) = 0
exists and is unique, we introduce the following auxiliary function

σ̄ (B,X) ≡
{
σ(B,X) for B � 0
S(0, X) − S(0, X0) + B for B < 0.

(52)

This function σ̄ (B,X) is a continuous function which is monotone strictly increasing in B
also for B < 0. We have then extended σ to negative values of B, which is shown to be a
useful trick. We cannot use the standard form of the implicit function theorem because ∂S/∂B

diverges at B = 0. Nevertheless, the proof is a variant of the standard proof of the implicit
function theorem for scalar functions. We have that σ̄ (0, X0) = 0. By the monotonicity
property one has that there exist B1 < 0 < B2 such that σ̄ (B1, X0) < 0 < σ̄(B2, X0). By
continuity, there exists an open neighbourhood R � X0 such that σ̄ (B1, X) < 0 < σ̄(B2, X)

for all X ∈ R. Then, from the intermediate value theorem it follows that there exists a value
B̄ ∈ (B1, B2) such that σ̄ (B̄, X) = 0 for any fixed X ∈ R. Monotonicity ensures that B̄ is
unique for each fixed X ∈ R. The function B(X) : R → R is then defined as the map defined
by B(X) = B̄, where B̄ is the solution of σ̄ (B̄, X) = 0 for each fixed X ∈ R. Such a function
satisfies B(X0) = 0 and is also continuous in X. This follows again from the fact that σ̄ is
a continuous function which is monotonically strictly increasing in B. Being continuous, one
has that the set

Z(σ̄ ) ≡ {(B,X) | σ̄ (B,X) = 0} (53)

5 Note that (0, X0) cannot be a local but non-global minimum for S under the natural requirement that each
surface S = const corresponds to a unique integral manifold of δQrev (this means that isentropic states are path-
connected (cf [43])). In fact, in homogeneous thermodynamics, there exists an integral manifold of δQrev such that
S(B, X) = S(0, X0) = const if (0, X0) is not a global minimum, and to such an integral manifold (0, X0) would
not belong if (0, X0) is a local minimum. Note also that no point belonging to the boundary B = 0 can be a local
maximum, because S(B, X) is a strictly increasing monotone function in B.
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is a closed set. Given a sequence {Xn} ⊂ R such that Xn → X̂ ∈ R for n → ∞, one finds
that there exists a unique (by monotonicity) B̂ such that (B̂, X̂) ∈ Z(σ̄ ). This means that
limn→∞ B(Xn) = B(X̂) = B̂, i.e., B(X) is continuous.

It is evident that

Z(σ̄ ) ⊇ Z(σ) (54)

and we have to get rid of the spurious solution B = −(S(0, X) − S(0, X0)) < 0 which could
occur for S(0, X) − S(0, X0) > 0. But this solution cannot hold for any X ∈ R, because in
any neighbourhood of (0, X0) there exist points (0, X−) such that S(0, X−) − S(0, X0) < 0.
Thus, being a spurious solution not defined in the whole R, the above proof allows us to
conclude that B(X) � 0 surely exists. �

The same result holds true in the case where coordinates y0, . . . , yn+1 introduced in
section 5.5 are used. One has to note that ∂S/∂y0 = a0/T is a monotone function near
y0 = 0 because a0 is of definite sign in a right neighbourhood of y0 = 0 (one can impose
a0(y

0 = 0, y1, . . . , yn+1) > 0). This monotonicity is sufficient in order to implement the
above proof, with straightforward changes. We now discuss some consequences of the above
result.

5.6.1. Validity of (N). If (N) holds, then T = 0 plays at most the role of asymptotic
manifold for the inner leaves S = const. No inner integral manifold can intersect T = 0,
i.e., T = 0 is a leaf. The validity of (N) does not forbid the inner leaves to asymptotically
approach T = 0 as some deformation variable, say Xk , is allowed to diverge: |Xk| → ∞ as
B → 0+. The unattainability is clearly ensured because of such a divergence. Let us consider
X1 = X1

0, . . . , X
n = Xn

0 = const and let us define Y ≡ Xn+1; then, it is evident that the
differential equation

dB

dY
= ξ̃n+1

(
B, Y ;X1

0, . . . , X
n
0

)
(55)

cannot allow a solution such that B(Y ) → 0 for Y → Y0 (with Y0 finite) or such a solution
could be extended at B = 0, against (N). Some examples are given below.

5.6.2. Violation of (N). From result 4, it follows that, when (N) is violated, there exists a
solution B(X) of δQrev = 0 such that limX→X0 B(X) = 0; for inner points B(X) > 0, this
solution is actually a leaf of the foliation defined by the integrable (at least) C1 Pfaffian form
ω. As a consequence, for inner points B(X) is at least C2. One can also calculate the gradient
of B(X1, . . . , Xn+1):(

∂B

∂X1
, . . . ,

∂B

∂Xn+1

)
= (ξ̃1, . . . , ξ̃n+1) (56)

where the latter equality is due to the fact that B(X) satisfies the Mayer–Lie system. It is then
evident that (

∂B

∂X1
, . . . ,

∂B

∂Xn+1

)
→ 0 for B → 0+ (57)

i.e., B(X) reaching B = 0 is tangent to B = 0.

5.6.3. Examples. Let us consider

ω = dU +
2

3

U

V
dV ; (58)

the domain is chosen to be 0 � U, 0 < V and the Pfaffian form ω is C1 everywhere. One has
f = 5

3U which vanishes for U = 0. The boundary U = 0 is an integral submanifold of ω.
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Let us consider the Cauchy problem

dU

dV
= −2

3

U

V
(59)

U(V0) = 0. (60)

It is evident that the only solution of this problem is U = 0, which is a leaf of the
thermodynamic foliation. By integrating, one finds the (concave) entropy S = c0U

3/5V 2/5 and
T = 5/(3c0)(U/V )2/5 (c0 is an undetermined constant). (N) is satisfied. Along an isentropic
surface S0 > 0, one finds

U =
(

S0

c0

)5/3

V −2/3 (61)

and T = 0, i.e. U = 0 can be approached only for V → ∞.
Let us consider a Pfaffian form having the same domain 0 � U, 0 < V

ω = dU +

(
U

V

)2/3

dV (62)

the Pfaffian form ω is not C1 at the boundary U = 0. One has f = U + U 2/3V 1/3 which
vanishes for U = 0. The Cauchy problem

dU

dV
= −

(
U

V

)2/3

(63)

U(V0) = 0 (64)

allows two solutions: U = 0 and U = (V0
1/3 − V 1/3). The latter solution holds for

0 < V � V0, and it can be easily identified with the isentrope S = S0 = c0V0, where
S = c0(U

1/3 + V 1/3)3 is the (concave) entropy. (N) is violated and the two solutions are
tangent for U = 0.

Let us consider the following example, which is inspired by the low-temperature behaviour
of a Fermi gas. The Pfaffian form one takes into account is

ω = dU +
2

3

U

V
dV −

(
−1

3

U

N
+ 2c (NV )2/3

)
dN (65)

where c is a positive constant. This Pfaffian form is integrable and the integrating factor is

f = 2U − 2c
N5/3

V 2/3
. (66)

Then the zero of the integrating factor occurs for

U = c
N5/3

V 2/3
(67)

and, by construction, being f � 0, one imposes U � b(V,N) ≡ cN5/3/V 2/3. The function
b(V,N) is extensive and convex. Let us define

B = U − c
N5/3

V 2/3
. (68)

This coordinate transformation is regular in B = 0. We have

p̄(B, V,N) = 2

3

B

V
(69)

µ̄(B, V,N) = −1

3

B

N
(70)
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and

f̄ = 2B. (71)

Then, one finds

S = αB1/2V 1/3N1/6 (72)

(α is a proportionality constant) which can be easily re-expressed in terms of (U, V,N):

S = α
(
UV 2/3N1/3 − cN2

)1/2
. (73)

Note that, along S = S0 = const one has

B =
(

S0

α

)2 1

V 2/3N1/3
(74)

which can approach B = 0 only for V → ∞ and/or N → ∞. Moreover,

T = 2

α

(
UV 2/3N1/3 − cN2

)1/2
N−1/3V −2/3 (75)

and ∂T /∂U diverges as T → 0+.

5.7. Conditions for the validity of (N)

Let us define X ≡ X1, . . . , Xn+1; B,X1, . . . , Xn+1 are regular coordinates adapted to the
boundary as in section 5.5. We can write

Ŝ(B,X) − Ŝ(B0, X) =
∫ B

B0

dY
1

f (Y,X)
. (76)

When B0 = 0 or B → 0+ the integral has to be intended as an improper integral. Nevertheless,
according to a common use, we bypass this specification in the following. We can show that
it holds

Result 5. If B,X1, . . . , Xn+1 are regular coordinates adapted to the boundary as in
section 5.5 and if ω ∈ C1(D ∪ ∂D), then Ŝ → −∞ for B → 0+, which means that S → 0+

as B → 0+, i.e. (N) holds.

Proof. One has

ξi(B,X1, . . . , Xn+1) = ξk(B,X1, . . . , Xn+1) − ξk(0, X1, . . . , Xn+1)

= ∂ξk

∂B
(0, X1, . . . , Xn+1)B + o(B) (77)

(where o(B)/B → 0 as B → 0) and

f = k(0, X1, . . . , Xn+1)B + o(B) (78)

where k(0, X1, . . . , Xn+1) is continuous and positive because f � 0. As a consequence, near
B = 0 the integrand behaves as follows:

ω

f
∼ 1

kB
dB. (79)

Then the integral diverges as log(B) for B → 0+. There exists a function φ(B) non-integrable
near B = 0 such that 1/f (B,X) > φ(B):

φ(B) = inf
(X1,...,Xn+1)∈C

(
1

k(0, X1, . . . , Xn+1)

)
1

B
(80)

where C is any open bounded set contained in D (cf appendix B). �
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As a consequence of this result, we can conclude that any violation of (N) is involved
with a Pfaffian form that is not C1 also at the boundary T = 0, as can be easily verified
by considering the examples violating (N) in section 6. Note that the same result holds true
with obvious changes in the case where coordinates y0, . . . , yn+1 introduced in section 5.5
are used. Naively, result 5 could be expected also on the grounds of the fact that, if ω is C1

everywhere, then also f is C1 everywhere. If one considers ∂f/∂U = 1 + S(∂T /∂U) and
takes into account that the heat capacity at constant deformation parameters (∂U/∂T ) → 0+

as T → 0+ if S is finite in the same limit, then S → 0 in order that ∂f/∂U is continuous at
T = 0. Positivity and concavity of S force S to be finite, as shown in section 6.

5.8. Condition (HOM)

In order to give a necessary and sufficient condition for (N), we use the following interesting
property of δQrev. We have

δQrev

f
= dS

S
. (81)

Let us consider
∫
γ 0 δQrev/f , where γ 0 is a curve having final point at temperature T = 0.

If (N) holds, then
∫
γ 0 δQrev/f is an improper integral which diverges to −∞. In fact, if (N)

holds, whichever the path γ 0 one chooses, the integral of dS/S diverges to −∞ as T → 0+.
If, instead,

∫
γ 0 δQrev/f → −∞, whichever path is chosen for reaching T = 0, then S → 0+

in the same limit. Then the following result holds:

Result 6. (N) ⇔ ∫
γ 0 δQrev/f → −∞ as T → 0+ whichever path is chosen (condition

(HOM) in the following).

Note that, because of the concavity of S, one cannot have
∫
γ

δQrev/f → +∞ as T → 0+,
because a non-negative and concave entropy cannot diverge (cf section 6). Thus, once the
concavity property for S is ensured (cf [43]), one has only to check if the above integral
diverges along any rectifiable curve approaching the surface T = 0.

Note that, in this form, the above theorem allows us to neglect the problem of the actual
presence of the boundary T = 0 in the physical manifold. This formulation is also coherent
with the fact that (N) is formulated as a limit for T → 0+.

If (N) is violated and the limit limT →0+ S exists, then (81) is integrable along any path
approaching T = 0 with positive entropy (it is not integrable along any path approaching
T = 0 with vanishing entropy). For example, let us consider the following toy-model Pfaffian
form

ω = dU +

(
U

V
+ α0

U 2/3

(V N)1/3

)
dV +

(
U

N
+ β0

U 2/3

(V N)1/3

)
dN (82)

where α0 > 0, β0 < 0 are constants and the domain is restricted by V/N � −β0/α0. Then
one has

f = 3U + α0
(UV )2/3

N1/3
+ β0

(UN)2/3

V 1/3
. (83)

The integrating factor f vanishes as U → 0. ω/f is integrable along any path such that
V/N > −β0/α0, in fact, if g(V,N) stays for a positive function, one has f ∼ U 2/3g(V,N)

as U → 0+. If V/N = −β0/α0, then f ∼ 3U as U → 0+ and ω/f is no longer
integrable near U = 0. Note that the entropy which corresponds to this Pfaffian form is
S = 3(UV N)1/3 + α0V + β0N � 0. (N) is violated and S vanishes in the submanifold
U = 0, V/N = −β0/α0.
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Note that, if S is not concave but simply positive, then condition (HOM) is still equivalent
to (N), and that (HOM) is not affected by the connectedness properties of f = 0.

5.9. Inaccessibility (C) and the failure of (N)

The violation of (N) is very problematic from the point of view of (C) and of the foliation of
the thermodynamic manifold. If (N) is violated, T = 0 is not a leaf and it is possible to reach
T = 0 along inner (would-be) leaves S = const. Actually, one does not find a foliation of the
whole thermodynamic domain; if T = 0 is included in the thermodynamic manifold, one finds
an ‘almost-foliation’, i.e. a foliation except for a zero-measure manifold, in the sense that to
the proper inner foliation generated at T > 0 is joined a integral manifold T = 0 (the adiabatic
boundary of the thermodynamic domain) which breaks the adiabatic inaccessibility, even if
only along special paths passing through T = 0. In the spirit of the thermodynamic formalism,
we agree with Einstein’s statement that the existence of such adiabatic paths is ‘very hurtful
to one’s physical sensibilities’ [53]. It is also evident that the Carnot–Nernst cycle discussed
in appendix A is allowed, unless some discontinuity occurs or the thermodynamic formalism
fails according to Planck’s objection, and that the objections against its actual performability
can hold only in restricted operative conditions (from a mathematical point of view, a path
contained in the surface T = 0 is different from a isentropic path at T > 0 reaching the
absolute zero of the temperature). Moreover, the approach to the problem by means of δQrev

reveals in a straightforward way aspects which other approaches cannot easily point out.
A further remark is to some extent suggested by black-hole thermodynamics, where (N)

is violated but states at T = 0 have S = 0 (cf [54] for a study in terms of Pfaffian forms).
In order to avoid problems occurring with the surface T = 0 if (N) is violated, one could
introduce a further hypothesis. One could impose that the entropy is discontinuous at T = 0,
and that

�0 < inf
X1,...,Xn+1

�(X1, . . . , Xn+1). (84)

One could then impose that �0 = 0 for all the systems, which would allow us to recover
a universal behaviour. Even the adiabatic inaccessibility would be restored, because the
second law would inhibit reaching T = 0 adiabatically. This behaviour characterizes black-
hole thermodynamics. Concavity would be preserved, as well as superadditivity. However,
this choice is arbitrary and even unsatisfactory, because a well-behaved foliation of the
thermodynamic manifold is obtained by hand by means of the discontinuous entropy S just
constructed. In fact, the foliation of the thermodynamic manifold, if (N) is violated, is obtained
as the union of the usual foliation at T > 0 and a special leaf at T = 0. This foliation is
generated by a Pfaffian form only in the inner part of the manifold.

6. Notes on the Gibbsian approach

We recall that in the Gibbsian approach [55], the existence of the entropy is a postulate,
because the entropy appears in an axiomatic framework (see also [47, 56, 20]). In a certain
sense, very loosely speaking, Gibbs starts where Carathéodory leaves off [57]. This can be
considered the reason why in the Gibbsian approach the problems which can be associated
with the surface T = 0 as in the previous section appear to be less evident. Let us assume the
Gibbsian approach to thermodynamics, and write the so-called fundamental equation in the
entropy representation:

S = S(U,X1, . . . , Xn+1) (85)
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where, as usual, X1, . . . , Xn+1 are extensive deformation variables and U is the internal energy.
S is required to be a first-order positively homogeneous function and, moreover, a concave
function (for mathematical details about convexity we refer to [58, 59]).

6.1. Extension of S to T = 0

Let us define

I (U,X1, . . . , Xn+1) = −S(U,X1, . . . , Xn+1). (86)

In what follows, x stays for a state in the thermodynamic manifold: x ≡ (U,X1, . . . , Xn+1).
The function I (x) is, by definition, a convex function and a positively homogeneous function.
As a consequence, its epigraph is a convex cone. This convex function I is defined on C (we
change symbol for the domain, what follows holds for a generic convex function in a generic
convex domain). There is a preliminary problem. One has to define I (x) at the boundary ∂C
and obtain again a convex function. This is done as follows [59]: I can be extended to the set

F = C ∪ ∂Cf

where

∂Cf ≡ {y ∈ ∂C | lim inf
x→y

I (x) < ∞}
and

I (y) ≡ lim inf
x→y

I (x) ∀y ∈ ∂Cf . (87)

The above extension is convex on a convex set. In general, one cannot substitute
lim infx→y I (x) with limx→y I (x) because the latter may not exist [59]. Moreover, the
behaviour of the convex function I = −S at the boundary has to be such that

lim inf
x→x0

I (x) > −∞ (88)

for any x0 belonging to the boundary of the convex domain (cf problem F, p 95 of [59]).
In the case of S, then the non-existence of the above limit can be considered unphysical.

In fact, it can also mean that the entropy could approach a different value for the same state
along different paths starting from the same initial point. In the latter case, its nature of
state function would be jeopardized, it requires at least the existence of the limit, that is, the
independence of the limit from the path chosen. On this topic, see in particular [1, 2]. In any
case, the definition offered by the theory of convex functions

S(y) ≡ lim sup
x→y

S(x) ∀y ∈ ∂Cf (89)

is a rigorous formal prescription, but it is not clear to the present author if it could be relevant
to the physics at hand, if the limit does not exist.

Then, we assume that S admits a limit for each point of the boundary T = 0, thus

S(y) ≡ lim
x→y

S(x) ∀y ∈ {T = 0}. (90)

Under this hypothesis, we can extend uniquely S at T = 0. The surface T = 0 represents
(a part of) the boundary ∂D for the domain, then it belongs to the closure of the convex open
set D. A convex set is dense in its closure. As a consequence, a continuous function G defined
in D can be uniquely extended by continuity at the boundary ∂D if (and only if), for each point
xb ∈ ∂D the limit

lim
x∈D→xb

G (91)

exists.
It is still to be stressed that, for a non-negative concave S, one has to find limT →0+ S < ∞

as a consequence of (88).
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6.2. Attainment of the lower bound of S

The Gibbsian approach allows us to conclude immediately that, if the upper bound I0 of I is
attained, then it has to be attained at the boundary of the thermodynamic manifold (if a convex
function I should get a maximum value I0 in a inner point of its convex domain, it would be
actually a constant function in its domain) [59]. Then, if the lower bound S0 of S is attained,
it is attained at the boundary of the domain of S. Moreover, under very simple hypotheses
on the domain, the upper bound of I is actually attained [58, 59]. In particular, it can be
attained at an extreme point of the boundary. We recall that an extreme point of a convex set
is a point belonging to the boundary of the set such that it is not an inner point of any line
segment contained in the set. For example, if the set is a closed rectangle, the extreme points
are the four vertices; if the set is a circle, all the points of the boundary (circumference) are
extreme points. But note also that, the thermodynamic domain being a convex cone, there is
no extreme point apart from the origin 0 of the cone (which cannot be considered a physically
meaningful state [43]).

Note that, given the surface T (U,X1, . . . , Xn+1) = 0 ⇔ U = U0(X
1, . . . , Xn+1), then,

for each point on this surface, as a consequence of the homogeneity of the entropy, it holds

S(λU0(X
1, . . . , Xn+1), λX1, . . . , λXn+1) = λS(U0(X

1, . . . , Xn+1),X1, . . . , Xn+1).

At the same time, the homogeneity of degree zero of T implies

T (λU0(X
1, . . . , Xn+1), λX1, . . . , λXn+1) = T (U0(X

1, . . . , Xn+1),X1, . . . , Xn+1) = 0.

Then, if U0(X
1, . . . , Xn+1),X1, . . . , Xn+1 ≡ Xa

0 , a = 0, . . . , n are the points belonging to the
surface T = 0, the cone

K0 ≡ {Xa
0 | λXa

0 ∈ K0, λ > 0} (92)

is contained in the surface T = 0 because of the intensivity of T. As a consequence, in the
case of violation of (N), one could find a system at T = 0 having an arbitrarily high entropy.
Only if S = 0 at T = 0 this cannot happen, because S = 0 is a fixed point under scaling of
the entropy.

6.3. Values of S at T = 0 and the hypothesis of multi-branching

We have assumed a continuous S at T = 0. From the point of view of Landsberg’s discussion
about a multi-branching near T = 0 [2, 1], we have then simply to discuss the following
topological problem. Is the set Z(T ) a connected set? In the case it is connected, then we
can surely conclude that no multi-branching can occur near T = 0. In fact, the range of a
continuous function on a connected set is a connected set, that is, the range of S at T = 0 is a
connected set contained in R. It has to be an interval (violation of (N)) or a single point (validity
of (N)). It is interesting to underline that, even if the set Z(T ) is not connected, (HOM) ensures
the validity of (N) and vice versa (there is no possibility of finding two branches such as the
ones in figure 1(a), because both have to start at S = 0, T = 0). A multi-branching can, e.g.,
be obtained by violating the concavity at least near T = 0. For an interesting example, see
[54]. (Another possibility to get a multi-branching could be to consider a system allowing for
states at T < 0, but in this case two distinct branches would be found on two different sides
of T = 0.)

6.4. Violation of (N) and Landsberg’s hypothesis

In Landsberg’s analysis, the hypothesis is made that the unattainability of T = 0 can hold
despite the violation of (N) if an abrupt discontinuity occurs near T = 0. Landsberg makes
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Figure 1. (a) Multi-branch structure of the thermodynamic space. According to Landsberg, it
implies the validity of (U) and the violation of (N). (b) Violation of (N) that implies a violation of
(U), due to the presence of the isentropic AB. Landsberg conjectures that (U) holds if a discontinuity
near T = 0 occurs. In (a) and (b) the dashed regions are forbidden.

the example of an abrupt divergence in the elastic constants of a solid as a conceivable ideal
process preventing a solid violating (N) reaching a zero-temperature state by means of quasi-
static adiabatic volume variations (the hypothesis of [1] is compatible with the vanishing
near T = 0 of the (adiabatic) compressibilities that are related to elastic constants in ordinary
thermodynamics; particularly, for standard systems one can define the compressibility modulus
as the inverse of the compressibility; it is proportional to the Young modulus in the case of a
solid). We discuss this hypothesis briefly. Consider the following toy model:

S = γ0V
1−αUα + δ0V (93)

where γ0 > 0, δ0 > 0 and 0 < α < 1. Then

T = 1

γ0α

(
U

V

)1−α

(94)

which vanishes as U → 0+: T = 0 ⇔ U = 0. For the domain, let us consider
F = {U � 0}∪{V � V0}. I is maximum, that is, S is minimum, at the extreme point (0, V0), as
it is evident. (Note that in this example the domain is not a convex cone because we introduce
a lower bound V0 for V , as is physically reasonable in order to justify thermodynamics on
statistical mechanical grounds. If one considers F = {U � 0} ∪ {V > 0}, then inf(S) = 0,
which is approached at the only extreme point (0, 0) of the cone.) If δ0 > 0, then (N) is
violated and S can assume an interval of values at T = 0. If δ0 = 0, then (N) is satisfied and I
is maximal for U = 0. A special case is represented by the photon gas, where α = 3

4 .
This toy model corresponds to the following behaviour of S as a function of T and V :

S(T , V ) = (
ε0T

α
1−α + δ0

)
V (95)

which, for δ0 �= 0, violates (N). It is useful to pass to the energy representation

U =
(

S − δ0V

γ0

) 1
α

V
α−1
α . (96)

The domain is G = {V0 � V � S/δ0}. The T = 0 surface corresponds to V = S/δ0. We have

T = 1

α

1

γ
1
α

0

V
α−1
α (S − δ0V )

1
α
−1 (97)
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the pressure is

p = 1

α

(
1

γ0

) 1
α

(S − δ0V )
1
α
−1 V − 1

α (S(1 − α) + V αδ0). (98)

The isentropic S = S0 has the equation

U(V ) =
(

S0 − δ0V

γ0

) 1
α

V
α−1
α (99)

and reaches T = 0 when V = S0/δ0 during an adiabatic expansion. It is easy to see that it
is tangent to the T = 0 surface. The adiabatic expansion has to stop there, because of the
structure of the domain. One can wonder if any physical reason for such a stopping exists. It
is useful to come back to Landsberg’s suggestion about a possible vanishing of the adiabatic
compressibility:

KS = − 1

V

(
∂V

∂p

)
S

. (100)

In our case, we get

KS = α2γ
1
α

0

1

1 − α

1

S2
V

1
α (S − δ0V )

2α−1
α (101)

and three cases occur: when 1
2 < α < 1 then KS → 0 as T → 0+, in such a way that the elastic

constants of the system diverge in that limit, forbidding any further expansion (Landsberg’s
behaviour); when 0 < α < 1

2 then KS → ∞ as T → 0+, the elastic constants vanish and the
behaviour of the system is pathologic (the system appears to be ‘totally deformable’ in that
limit); when α = 1

2 then KS → γ 2
0 V 2/(2S2) which is in any case finite (S is surely positive

and not zero) and a physical hindrance against reaching T = 0 is not apparent. For α = 3
4 the

behaviour for S as T → 0+ is like the one of Debye model, except for the shift δ0V which
allows the violation of (N); the adiabatic expansion stops at T = 0 because of a vanishing KS .
For α = 1

2 one obtains a behaviour similar to that of an electron gas near T = 0, except for
the shift δ0V ; no vanishing or divergence of KS is allowed at T = 0.

We wish to underline that, if one considers the entropic fundamental equation of an
electron gas at low temperature and shifts it by δ0V , then the situation is still different, because
of the zero-point mode contribution. In fact, such a contribution allows us to get a positive
and finite p as T → 0+ and, moreover, a positive and finite KS,N as T → 0+ (the domain
is V > 0, N > 0, U � U0(V ,N), where N is the particle number). As a consequence,
Landsberg’s mechanism does not seem to be available. Instead, even if the zero-point mode
contribution is taken into account in the case of a Debye crystal, the pressure is still positive
as T → 0+ but KS,N vanishes. A further property is described in appendix C.

Summarizing our analysis in Gibbs framework:

(g1) if S � 0 , then S = 0 can be attained at a point of the boundary of the domain;
(g2) it could be that S > 0 at other points belonging to the surface T = 0. Then,

homogeneity implies that, by scaling, a system with an arbitrarily high zero-
temperature entropy could be obtained;

(g3) models exist where the violation of (N) does not imply the attainability of T = 0
and the violation of �S = 0 for adiabatic reversible transformations (states at T = 0
are not available and so no such violation can occur at T = 0). But these systems
display a non-universal behaviour (i.e., a behaviour which does not appear in other
models).
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7. Conclusions

We have discussed the status of the third law of thermodynamics and we have given an heuristic
argument in favour of the entropic version of the third law. Then, we have analysed the law
both in Carathéodory’s approach and in Gibbs’ approach to thermodynamics.

In particular, Carathéodory’s approach shows that for T > 0 the thermodynamic manifold
can be foliated into leaves which correspond to isentropic surfaces. The only hypothesis is that
the Pfaffian form δQrev is integrable and C1 in the inner part (T > 0) of the thermodynamic
manifold. At the boundary T = 0, which is assumed to be an integral hypersurface of the
Pfaffian form δQrev, the aforementioned Pfaffian form is allowed to be also only continuous.
The special integral manifold T = 0 is problematic from a physical point of view, because
it can also be intersected by the inner (would-be) leaves S = const. In the latter case, (N)
is violated and one obtains an almost-foliation of the thermodynamic manifold, where the
inaccessibility property fails, even if only along special adiabatic paths which pass through
the surface T = 0. For an entropy which is continuous also at T = 0, (N) holds if and only
if T = 0 is a leaf. This is a remarkable result, the validity of (N) is strongly related to the
possibility of obtaining a foliation for the whole thermodynamic manifold, including T = 0.
We have shown that, if the Pfaffian form is C1 everywhere, then (N) is preserved. Physical
assumptions and mathematical conditions have been discussed.

In another paper [51], further conditions leading to the third law are discussed.
We add herein some notes about the conditions ensuring (N) in quasi-homogeneous

thermodynamics introduced in [46]. Also in the quasi-homogeneous case (N) holds iff
limT →0+ S = 0. The analysis of sections 5.5 and 5.6 holds with obvious changes; moreover,
condition (HOM) holds unaltered, and, if the Pfaffian form ω is C1 everywhere, then (N) holds
(this can be shown by using a criterion analogous to the one appearing in result 5).
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Appendix A. Transformations at T = 0

Concerning the hypothesis (η1) of section 3, we recall that Landsberg substantially rejects it,
because he postulates a poor population of zero-temperature states in order to forbid the T = 0
transformation in the special Carnot cycle having the lower isotherm at T = 0 (see figure 2).
We refer to this cycle as the Carnot–Nernst cycle. Each state can be associated with its von
Neumann entropy and a priori a violation of (N) and a discontinuity are allowed. There is in
any case a postulate about the density of the zero-temperature states which is ‘discontinuous’
with respect to the assumptions for the states at T > 0.

The path of Nernst consists in starting from the violation of the Ostwald formulation of
the second law which is implicit in the Carnot–Nernst cycle. If it were possible to perform it,
it would imply the existence of a thermal machine with efficiency one, which is a violation
of the second law of thermodynamics. Note that the violation of the identification between
adiabats and isentropes is implicit in the T = 0 isotherm of the Carnot–Nernst cycle. In order
to avoid this violation, Nernst postulates therefore the unattainability (U) of absolute zero (see
also [60]).

Criticisms against this path, relating the third law to the second one, have a long history (see
[2, 14, 18, 53, 61, 62] and references therein) which starts with Einstein’s objection. Einstein
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Figure 2. Carnot–Nernst cycle in the plane T –S.

underlines that near T = 0 dissipations begin being non-negligible [53]. This would make the
Carnot–Nernst cycle unrealizable because the adiabatic T = 0 could not be performed. This
kind of criticism could be moved also against any attempt to define transformations at T = 0.
Nevertheless, it is true that a postulate on thermodynamics is required at T = 0, as variously
realized in literature (see, e.g., [14]). The objection against the Carnot–Nernst cycle can also
avoid referring to irreversibility arising near T = 0, as discussed, e.g., in [61, 62]. The point
is that one reaches the T = 0 surface by means of an adiabatic reversible transformation, say
BC, and that also any transformation CD at T = 0 has to be adiabatic (see figure 2). Then, it
does not seem possible for the system to be carried along the CD transformation contained in
the T = 0 surface [61, 62] because the adiabatic constraint applies to BC as well as to CD and
so an operative procedure (no matter how ideal) to carry on the cycle seems to be missing. It
is to be noted that any reversible transformation at T = 0 is adiabatic by itself, thus, from the
point of view of an operative procedure, one should implement an adiabatic insulation of the
system.

This kind of reasoning implies a failure of the thermodynamic formalism at T = 0, because
of the impossibility of giving a satisfactory prescription for implementing transformations
at T = 0. In particular, the problem is related to the existence of the intersection between
adiabatic surfaces (any isentropic surface intersecting the T = 0 surface is an adiabatic surface
which intersects the very peculiar adiabatic surface T = 0), because of the apparent absence
of tools allowing us to pass from one to another one adiabatically. In some sense, we find an
incompleteness of the thermodynamic formalism at T = 0, because there are serious problems
in defining an operative procedure [53, 61, 62]. Nevertheless, we wish to underline that, as a
matter of principle, it could be still possible to implement the adiabatic transformation at T = 0
as a distinct adiabatic transformation, because, even if an adiabatic constraint is required, it
corresponds to a path mathematically distinguished in the thermodynamic space. It is clear
that, if one considers a system described by (U, V,N) and, in ideally approaching T = 0
considers the system as closed, then no possibility of distinguishing operatively between
the adiabatic transformation implemented in order to approach T = 0 and the adiabatic
transformation T = 0 is left. But for systems with a larger thermodynamic space (e.g.,
systems characterized by other deformation parameters) one could have closed systems where
the adiabatic and isothermal transformation at T = 0 could be implemented.

Appendix B. A sufficient condition for a continuous S at T = 0

The entropy S is required to be continuous at T = 0. This can be obtained as follows. It is
evident that the continuity of Ŝ implies the continuity of S. Then, one can impose conditions
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which allow Ŝ to be continuous at T = 0. Nevertheless, the continuity of Ŝ excludes, by
direct inspection, the possibility of obtaining S = 0 at T = 0. Thus, one has to find further
conditions on Ŝ in order to allow the possibility of getting a vanishing entropy at T = 0. Let
us consider

Ŝ(B,X1, . . . , Xn+1) =
∫ B

B0

dB
1

f (B,X1, . . . , Xn+1)
+ Ŝ(B0, X

1, . . . , Xn+1). (B.1)

We wish to know if the limit as B → 0+ of Ŝ exists. A sufficient condition is the following:
there exists a positive function φ(B) such that for all B ∈ (0, B0] and for all X1, . . . , Xn+1 ∈ C

1

f (B,X1, . . . , Xn+1)
< φ(B) (B.2)

where C ⊂ R
n+1 ∩ D is any open bounded set contained in D and

lim
B→0+

∫ B

B0

dB φ(B) < ∞. (B.3)

Then
∫ B

B0
dB 1/f is uniformly convergent and, Ŝ being continuous for B > 0, one finds

that Ŝ can be extended continuously also at B = 0. This condition ensures that (N) is
violated. The above condition does not leave room for S = 0 for some (but not all) values
of X1, . . . , Xn+1 ∈ D. Actually, continuity on a open bounded subset R ⊂ R

n+1 ∩ D of the
allowed values for the variables X1, . . . , Xn+1, can also be obtained by assuming that (B.2)
holds on R and not for any open bounded set C contained in D. In this case, Ŝ is continuous
at T = 0 for X1, . . . , Xn+1 ∈ R.

In order to obtain a condition ensuring (N) a sufficient condition is the following: there
exists a positive function φ(B) such that for all B ∈ (0, B0] and for all X1, . . . , Xn+1 ∈ C

1

f (B,X1, . . . , Xn+1)
> φ(B) (B.4)

where again C ⊂ R
n+1 ∩ D is any open bounded set, and

lim
B→0+

∫ B

B0

dB φ(B) = −∞. (B.5)

Then, because the above divergence of the integral is uniform in X1, . . . , Xn+1, one finds that
Ŝ = log(S) → −∞ as T → 0+, i.e. S → 0+ as T → 0+. The same considerations hold true
if coordinates y0, . . . , yn+1 are used.

Appendix C. A further property in the Gibbsian frame

Another point that can be underlined is the following. Let us assume the extension of the
convex function I = −S to all of R

n, by defining I = +∞ outside its domain dom I . Then,
replace this function with its closure. This is the same procedure which is prescribed in [63] for
the internal energy U. Then I is a closed proper convex function which is essentially smooth,
that is, |∇I | → ∞ for any subsequence converging to a boundary point. In fact, in the gradient
of I the factor 1/T appears which diverges as the boundary T = 0 is approached. This allows
us to obtain in thermodynamics a convex function of Legendre type, which is relevant for the
discussion of Legendre transformations in thermodynamics. The difference of the entropy
representation with respect to the energy representation is evident from this point of view.
(cf, e.g., [63]). But we think that the entropy representation is more fundamental with respect
to the energy representation at least as far as the boundary T = 0 is to be taken into account.
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